Yong Yue yiy5130@psu.edu

September 26, 2016

Dr. Linda Hanagan The Pennsylvania State University 212 Engineering Unit A University Park, PA 16802

Dear Dr. Hanagan,

I submit the follow document, Technical Report II – Building Codes, Specifications, and Loads, in support of my senior thesis program. This report has been written to identify the load determination process and all building codes applied to the analysis and design of 706 Madison Avenue. Due to the complexity of my building, hand calculations with graphs has been chosen as a major way of illustrating the relevant structural loads imposed on this building.

In addition, the report consists of an executive summary, site plan and location plan, and a brief introduction in order to provide a better understanding of the building and the purpose of this report. The hand calculations presents the determination of structural gravity, wind, and seismic loads imposed on the building.

Thank you for your consideration and evaluation of this report.

Sincerely,

Yong Yue

The Pennsylvania State University

Architectural Engineering Class of 2017

706 Madison Avenue | New York, USA

Building Codes, Specifications, and Loads Structural Notebook Submission A

Submitted to: Dr. Linda Hanagan, Advisor

Prepared by: Yong Yue [Structural Option] Prepared

on: September 26th, 2016

Executive Summary

706 Madison Avenue is a 48,500 square-foot, high-end retail building located on the southwest corner of Madison Avenue and 63rd Street of the upper east side of Manhattan, New York. The building consists of a 3-story existing landmarked building and a five-story horizontal extension on two sides.

The existing landmarked building was built in 1920 and was initially constructed with masonry walls, steel columns, cinder concrete slabs, and marble and brick façades. Back to 1920s, building codes didn't require seismic design for structures. So the old building wasn't designed to resist seismic load; however, the masonry walls and core stairwells in the building have been designed for wind.

The addition took place on March 2015. It is still under construction and scheduled to be done in January 2016. The structural system consists of steel columns, concrete slab with composite metal deck, a mat foundation and moment frames for a lateral load resisting system. However, the addition's lateral load resisting system is independent from the existing building.

The building was designed based on the 2008 New York City Building Code. The exterior of building also needs to meet the historical requirements, which are regulated by Landmark Preservation Commission (LPC).

Table of Contents

1	I	ntroduction	3
	1.1	Purpose	3
	1.2	Scope	3
	1.3	Site Plan and Location Plan	3
	1.4	Building Codes & Reference Standards	4
2	G	Gravity Load	5
	2.1	Roof Construction	5
	2.2	Floor Construction	6
	2.3	Typical Exterior Wall Detail	7
	2.4	Snow Load	9
3	V	Wind Load	11
	3.1	Calculations	11
4	S	Seismic Load	20
	4.1	Calculations	12
5	(Conclusion	24

[1] Introduction

1.1 Purpose

This report has been written in order to develop a detailed description of the loading conditions on 706 Madison Avenue. The loads described and analyzed in this report will serve as a foundation of technical knowledge for an investigation of the existing structural system of 706 Madison Avenue in the following reports.

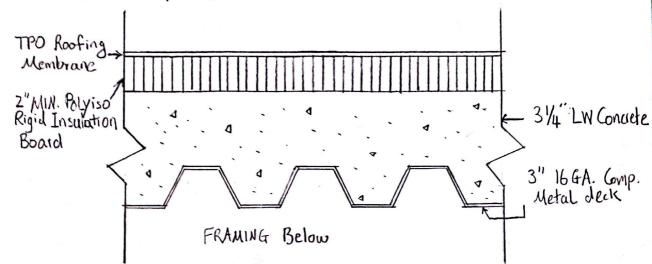
1.2 Scope

The content of this report is comprised of three major sections: gravity loads, wind loads, and seismic loads. The structural loads imposed on this building are shown by hand calculations as well as graphs.

1.3 Site Location and Plan

As shown in the figure above (Figure 1 & 2), 706 Madison Avenue is located at the southwest corner of Madison Avenue and East 63rd Street, which is in a historical district at the upper east side of Manhattan, New York. The shape of the site is basically a rectangular, with a demension 90'x100'.

Figure 1
Site Context


Figure 2 Site Context (Google Map)

1.4 Building Codes & Reference Standards

A. New York City Building Codes (NYCBC), 2008 with Current Revisions B. ASCE 7-02 Minimum Design Loads for Buildings and Other Structures

[2] GRAVITY LOAD

21 Cross section of roof construction

- · Roof Loading
 - Dead Load: (according to ASCE7-02 Table C3-1)

Roofing Membrane: 1PSF 2" Rigid Insulation: 3PSF

31/4" LW Concrete 3: 46 psf

5" 16GA. Comp. deck).

Framing: Frsf

Wiscellaneous: 10psf

DLr=67 PSF

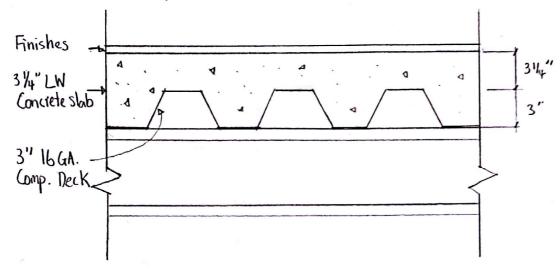
- Live Load:

LLr = 20 psf (according to ASCE 7-02 C4.9.1 Min. Roof Live Loads)

- Snow Load:

Ground Snow Load; Pg = 25 PSF (ASCE7-02 Figure 7-1)

Exposure Factor; Cc = 0.9 (ASCET-02 Table 7-2 for Terrain Category B. and a fully exposed roof)


Thermal Factor; Ct = 1.0 (ASCE 7-02 Table 7-3)

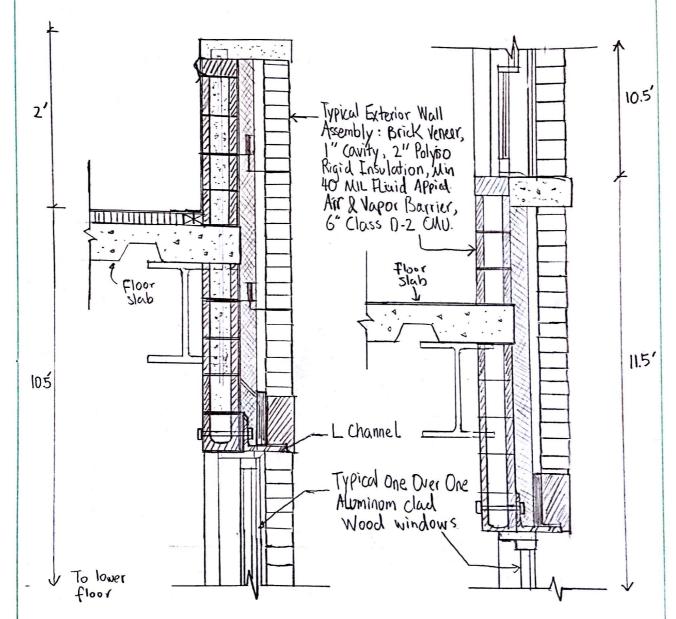
Important Factor; Is = 1.0 (ASCE7-02 Table 7-4)

Flat Roof Snow Load; $P_f = 0.7 \text{ (e G+ Is } P_g = 0.7 \text{ (e G+ Is } P_g = 0.7 \text{ (e,9)(1)(I)(25)} = 16 \text{ psf} \ \angle 20 \text{ psf} \text{ (Nin)}$ Thus. Use $P_f = 20 \text{ psf}$.

GRAVITY LOAD (cont)

22 Cross section of floor construction

- · Floor Loading
 - Dead Load


Finishes: 2 psf
Concrete Slab + deck: 46 psf
Framing: 7 psf
Columns: 1 psf
Miscellaneous: 10psf

DLf = 66 PSf

- Live load:	Number Noted	Code Minimum
Retail - 1st Floor	Number Noted in Drawings 105 psf	(ASLE7-02) 100 PSF
Retail - Upper Floors	75 Psf	75 psf
Public Assembly Space	loo psf	100 PSF
Stairs and Exits	100 b2t	loopsf
Storage	125 Psf	125 BF
Side walk	800 bet	250 PSF
Elevator Machine Room	125 PSF	15085

GRAVITY LOAD (cont.)

2.3 Cross section of typical wall details with load path description and dead Load.

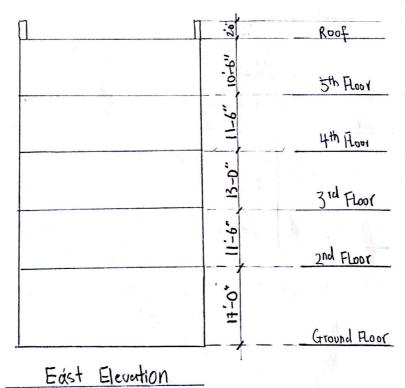
Exterior Wall Detail at Roof Exterior Wall Detail at Floor

· Load Path:

Wall loads act on the L channels, L channels transfer Loads into 6" concrete masonry unit (CMU) throught the bolts, CMUs transfer loads to the concrete slab with composite metal deck, concrete slabs transfer load to the transverse beams, the transverse beams transfer loads to the columns, and the columns transfer loads down to foundation.

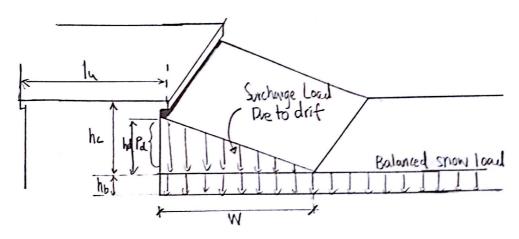
GRAVITY LOAD (Cont.)

· Dead Load of Wall (From ASCE7-02 Table C3-1)


For Roof:

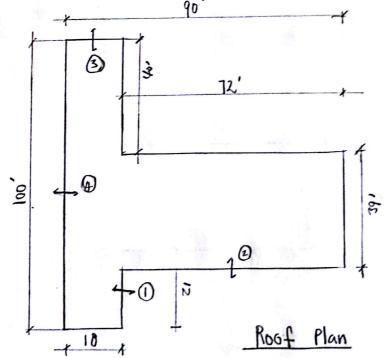
What =
$$96(\frac{10.5}{2}+2) = 696$$
 PLF

For floors:


Wim(5) =
$$96(\frac{10.5}{2} + \frac{11.5}{2}) = |0.56|$$
 PLF

When
$$(4) = 96 \left(\frac{11.5}{2} + \frac{13}{2} \right) = 1176 \text{ PIF}$$

24 Snow Load


· Drift @ Parapet (Windward drift)

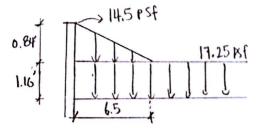
Figue 7.8 Snow Drifts on Lower Roof (ASCE7-02)

Y = 0.13 Pg + 14 = 0.13(25) + 14 = 17.25 PCF (but no more than 30 PCF)

$$h_c = 2' - 1.16' = 0.84'$$
; $\frac{h_c}{h_b} = \frac{0.84'}{1.16} = .72 > 0.2 \Rightarrow diff load most to be considered.$

Snow load (unt.)

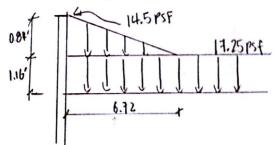
Parapet Section 1:

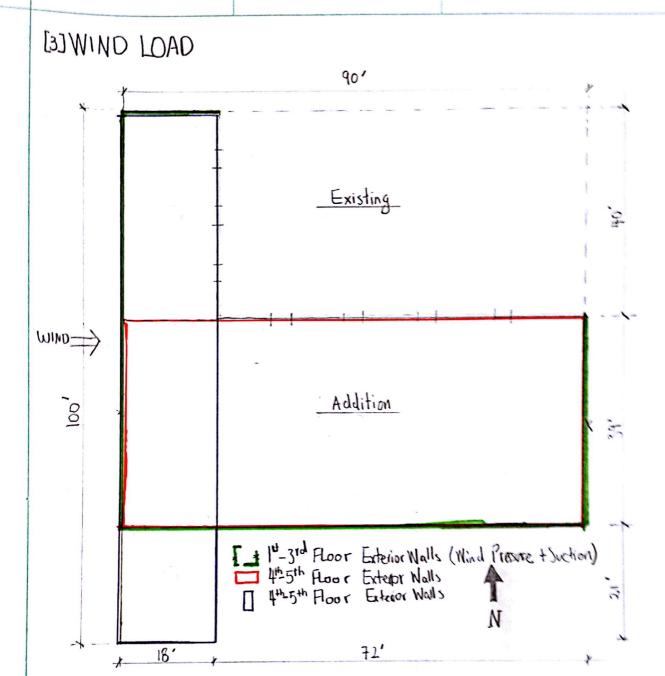

lu=18' 125 : use lu=25'

hd = 0.75 [0.43 3/25 4/25+10-1.5] = 1.17 > hc : Same drift for 2.3,4

W= 4hd2/hc & hd = hc

 $W = \frac{4(1.17)^2}{0.84} = 6.5' \angle 8hc = 8(0.84) = 6.72' : W = 6.5'$


Pd=Yhd=YhL=17.25 (0.84)= 14.5 Psf


Section 1

(2): hd = 0.75 [043 3] 39 4 [25+10-15] = 1.54 > he

W= 4 (1.54)2 = 11.2'>8hc=672' : W= 6.72' for 2,0,0

Pd= Yhc= 17.25 (0.84)=14.5195f

- · Risk Category: I (ASCE7-02 Table 1-1)
- · Wind Speed: 98 mph (Figure 6-1, 3-sec gust)
- · Wind Directionality Factor: Kd = 0.85 (Table 6-4)
- · Wind Important Factor: Iw=10 (Table 6-1)
- · Exposure Category: B (Section 6.5.6.3)
- · Topographic Factor: Kzt = 1 (10 except for isolated escarpments, ridges (hills Section 6.5.7)

WIND LOAD (cont.)

· Velocity Pressure Coefficients, Kz

(Table 6-3)

Story	Ht. & (ft)	Story Ht (ft)	Kŧ	I	Ket	KY	ν²	(124)
1	0	17	0.7	١	١	.85	9604	14.6
2	17	11.5	0.7	١	1	.85	9604	14.6
3	28.5	13	0.7	١	1	.85	9604	14.6
4	41.5	11.5	0.77	١	ı	.85	9604	16.1
5	53	10.5	0.82	١	1	.85	9604	17.
Roof	63.5		- 86	1	1	.85	9604	18.0

(Eq. 6-15)

· Gust Effect Factor:

Since ASCET-02 doesn't have this section.

For structure steel moment resisting frame buildings:

$$N_q = 22.2 / h^{0.0} = \frac{22.2}{(63.5)^{.0}} = .802 \ L \ (ASCET-10. Eq. 26.9.2)$$
... Not rigid.

B = 0.01; Conservative for steel (AXE7-10, Structural damping)

Exposure $B \Rightarrow Z = 1/4$, E = 0.45, E = 320', E = 1/3, C = 0.3 (ASCET-02 Table 6-2) E = 0.6(63.5) = 38.1' > 30'

$$L\bar{z} = L(\frac{\bar{z}}{35})^{2} = 320(\frac{38.1}{33})^{1/3} = 336 \quad (E_{q.6}-7)$$

$$I\bar{z} = C(\frac{35}{2})^{1/6} = 0.5(\frac{35}{36.1})^{1/6} = .293 \quad (E_{q.6}-5)$$

1.12	Section	h (t1)	Bew(ft)	Lev1(41)	
	(I)	63.5	79	90	the state of the s
	2	63.5	100	18	and the state of t
	3	63.5	39	90	

For ① Wind E-W
$$\rightarrow$$

$$Q = \int \frac{1}{1+0.63(\frac{8+h}{1+2})^{0.63}} = \int \frac{1}{1+0.65(\frac{39+6.3.5}{336})^{0.65}} = .855$$
For ②
$$Q = \int \frac{1}{1+0.63(\frac{160+63.5}{336})^{0.65}} = .845$$

$$Q = \int \frac{1}{1+0.63(\frac{39+6.3.5}{336})^{0.65}} = .818$$

$$\nabla_{\underline{x}} = \overline{b} \left(\frac{\overline{z}}{35}\right)^{3} \vee \left(\frac{88}{60}\right) = 0.45 \left(\frac{38.1}{35}\right)^{44} (98) \left(\frac{88}{b^{0}}\right) = 67.0 \text{ ft/s} \quad (Eq. 6-14)$$

$$R, \text{ the resonant response factor, } R = \sqrt{\frac{1}{15}} Rn Rn RB (0.53+0.44 RL) \quad (Eq. 6-10)$$

$$R_{1} = \frac{101\overline{z}}{\sqrt{2}} = \frac{.802 \times 336}{61.0} = 4.02$$

$$R_{2} = \frac{7.147}{(1+10.3)(1)^{3/3}} = \frac{7.447 \times 4.02}{(1+10.3\times4.92)^{5/3}} = .058 \quad (Eq. 6-11)$$

$$R_{1} = \frac{1}{17} - \frac{1}{29^{1}} (1-e^{-29}) \quad (Eq. 6-15a)$$

$$R_{3} = .245 \quad 0 = 46.11 \text{ h}/\sqrt{v}_{\overline{z}} = 3.50$$

$$\begin{array}{ll} R_{B} = .203 & \eta = 4.6 \, \text{n.B/Vz} = 4.35 & \text{O} \\ R_{B} = .165 & \eta = 5.5 & \text{O} \\ R_{B} = .359 & \eta = 2.15 & \text{O} \\ R_{L} = .181 & \eta = 4.6 \, \text{n.L/Vz} = 4.96 & \text{O} \\ R_{L} = .570 & \eta = 4.96 & \text{O} \\ R_{L} = .181 & \eta = 4.96 & \text{O} \end{array}$$

$$R_{L} = .181$$
 $\eta = 4.6 \text{ n. } 4.7 \text{ z.} = 4.96$
 $R_{L} = .570$ $\eta = 4.96$

$$R(0) = \sqrt{\frac{1}{0.01}(.058)(.245)(.203)(0.53 + 0.44 \times .181)} = .421$$

$$R(3) = \sqrt{\frac{1}{0.01}(.058)(.245)(.359)(0.55+0.47 \times .181)} = .560 -$$

$$g_{R} = \sqrt{2 \ln(3600 \text{ fi})} + \frac{.5.77}{\sqrt{2 \ln(3600 \text{ fi})}} = 4.14$$
 (Eq. 6-9)

Gf = 0925
$$\left(\frac{1+1.7 \int_{7} \int_{90}^{2} Q^{2} + g_{A}^{2} R^{2}}{1+1.7 \int_{90}^{2} I^{2}}\right) = \left(\frac{1+1.7(215)[(5.4)^{2}(855)^{2} + (4.14)^{2}(421)^{2}}{1+1.7(5.4)(293)}\right) = .9232$$

G== 0.925
$$\left(\frac{1+1.7(.293)\sqrt{(34)^{4}(845)^{2}+(4.14)^{2}(.433)^{2}}}{1+1.7(.34)(.293)}\right) = .9227 \approx .92$$
 For 2

Gf = 0.925
$$\left(\frac{1+1.7(293)\sqrt{(34)^2(878)^2+(444)^2(.560)^2}}{1+1.7(34)(293)}\right) = .99$$
 For 3

- Enclosed Building > Internal Pressure Coefficient, GCpi=±0.18 (Fig. 6-5)

· External Pressure Coefficient, Cp. (Wind E-W) (Fig. 6-6)

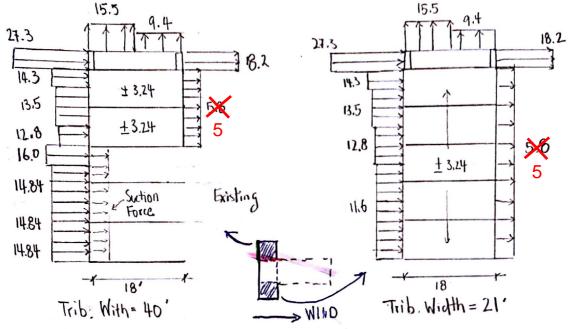
For (1): 4B=1.14; 1/L=.706 A=79*100=7900f1'=> Red. Foutor=0.8

For @: 1/B=18, 1/L=3.53 A=100x18=1800f1=> R.f=8

For 3: 48 = 1.31, 1/L = .706, A = 39 x 100 = 3900 ft > Rf = .8

- Walls:
$$Cp. w, ew = .8$$
 $\frac{2}{2.51}$ $Cp. L, ew = -0.28$ $\frac{2}{4} - 0.2$

- Roofs:
$$C_{p,100f,ew}(0-51.75) = -.96$$
 $\frac{h/L}{C_{p}0-\frac{1}{2}}\frac{1}{2-h}\frac{1}{h-2h}$
 $C_{p,100f,ew}(31.75-63.5) = -.82$ 0.5 -0.9 -0.9 -0.5
 $C_{p,100f,ew}(63.5-90) = -.58$ $0.70l$ $\frac{-0.9l}{-1.04}\frac{-0.82}{-0.7}\frac{-0.58}{-0.7}$

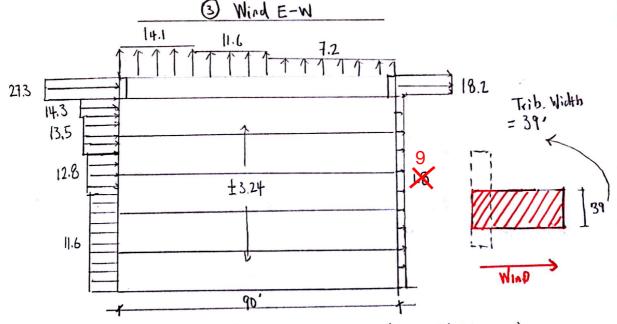

WIND LOAD (cont.)

				Net Pressure CPSF					
	Location	王 (ft)	92 84	Сp	44Cp (PSF)	GGi	946 (pi (psf)	266-9n(+66p) (PSF)	2666-901-669)
Windw	prod	0	14.6	0.8	11.6	81.0	3.24	8.36	14.84
		17	14.6		11.6			8.36	1484
		28.5	14.6		11.6			8.36	14.84
		41.5	16.1		12.8			9.56	16.04
		53	17.1		13.5			10.3	16.74
		635	18.0	V	14.3	1		11.1	17.54
Leaward	(2)	ĄL	18.0	-0.5	-9.0			-12.2	-5.8
	3	ALL .	16.0	-0.28	-5.0	0.18	3.24	-8.2	- 1.8
Parape	+ (w)	65.5.	18.2			1.5			21.3
	(L)	65.5	8.2	1		-1.0			-18.2
Roof {	0-9	63.5	18.0		-18.7.	To the second		-21.9	-15.5
2	9-18	0.5	10.0	-0.7	-12.6			-15.8	-9.4
9	0-3175			-096	-17.3	0.18	3.24	-20.5	-14.1
	31-45-655	635 18.0		82	-14:8			-18	-11.6
1	63.5-90			-,58	-10.4			-13.6	-1.2

WIND LOAD (cont.)

·North Part of 2 (With Suction)

· South Part of (2) (Without suction)
Wind E-W

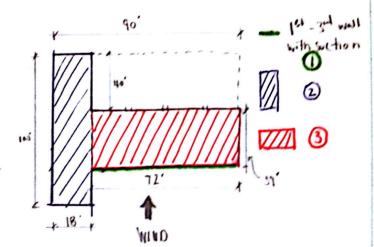


V=[14.8(17+11.5+6.5)+16(6.5)+ (12.6+5.8)(5.75)+(13.5+5.8)(5.75+5.25) +(14.5+5.8)(5.25)+(27.3+8.2)(2)]*40

= 45.5 K

V = [(1.6 +5.8)(17411.5 +6.5) + (128+5.8)(6.5 + 5.75) + (13.5 + 5.8)(5.75 +5.75) + (14.3 +5.8)(5.25) + (27.3 + 18.2)(2)] x 21

= 26.0 K


 $V = \left[(|16+18)(17+115+6.5) + (|25+1.8)(6.5+5.75) + (|3.5+1.8)(5.75+5.25) + (|4.3+1.8)(5.25) + (|27.3+18.2)(|2) + |3.4| + |3$

* Base Shear (E-W) = 115.5 + 26 + 38.4 = 110 K

*	N	-5	Direction
---	---	----	-----------

Section	h (ft)	BNS(A)	LNS(G+)
\odot	63.5	72	79
2	63.5	18	100
(3)	63.5	72	39

For Oh 3:

For (2):

3:

$$Q = \sqrt{\frac{1}{1+0.65\left(\frac{18+63.5}{336}\right)^{463}}} = .892$$

R, the resonant response factor,
$$R = \sqrt{\frac{1}{r}} R_n R_h R_0 (0.58 \pm 0.44 R_L)$$
 (Eq. 6-10)
 $N_1 = 4.02$, $R_n = .058$, $\sqrt{z} = 67.0'$ [from previous cals.]
 $R_L = \frac{1}{1} - \frac{1}{2\eta^2} (1 - e^{-2\eta})$ (Eq. 6-13a)

$$R_{L}=.203$$
 $\eta=4.6 \text{ n.L/Tz}=4.35$ for ①

 $R_{L}=.165$ $=5.50$ ②

 $R_{L}=.359$ $=2.15$ ③

$$R(0) = \sqrt{\frac{1}{0.01}(.058)(.245)(.220)(.58 + 0.47 \times .203)} = .460$$

$$R(0) = \sqrt{\frac{1}{0.01}(.058)(.245)(.57)(.58 + 0.47 \times .165)} = .730$$

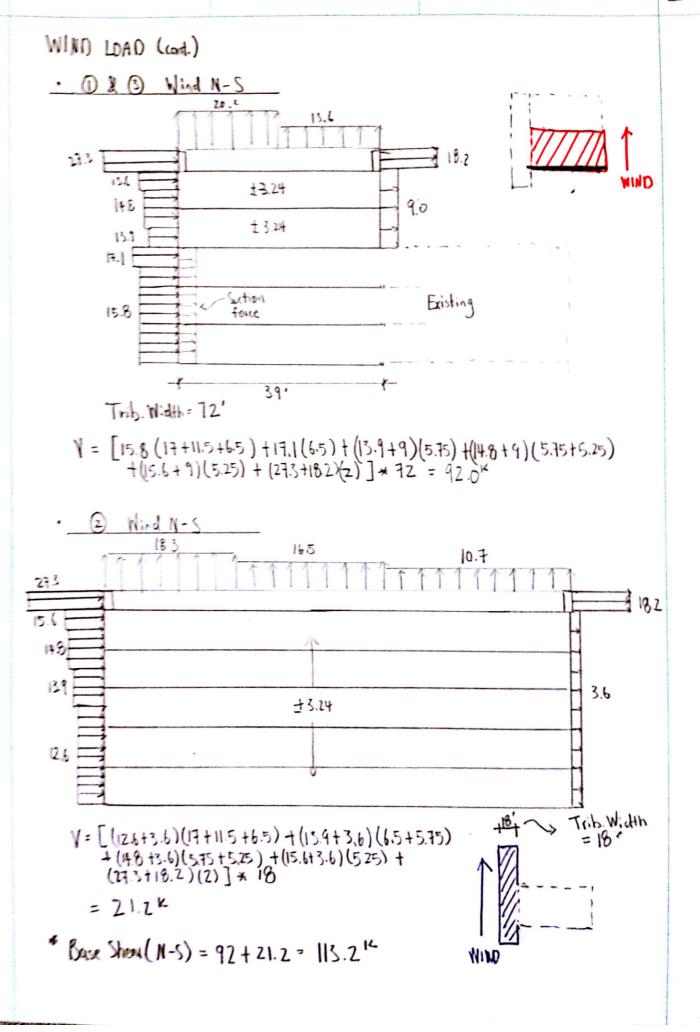
$$R(0) = \sqrt{\frac{1}{0.01}(.058)(.245)(.220)(.58 + 0.47 \times .359)} = .484$$

WIND Load (unt.)

$$G_{f} = 0.925 \left(\frac{1+1.7(.293) \overline{(3.4)^{2}(.659)^{2}+(4.14)^{2}(.46)^{2}}}{1+1.7(.293)(3.4)} \right) = .9398 \approx .94 \quad \text{(1)}$$

$$G_{1} = 0.925 \left(\frac{1+17(.293)(3.4)^{2}(.892)^{2}+(4.14)^{2}(.13)^{2}}{1+1.7(3.4)(.293)} \right) = 1.076 \approx 1.08$$
 @ E_{1} Govern>

Grf= 0.925
$$\left(\frac{1+1.7(.293)\sqrt{[3.4]^2(.859)^2+(4.14)^2(.484)}^2}{1+1.7(3.4)(.293)}\right)=.9478 \approx .95$$
 (3)


- Walls:
$$C_{p, W, NS} = 0.8$$
 $C_{p, L, NS} = -0.48$
 $C_{p, S, NS} = -0.7$
 $\frac{1 - 0.5}{1.1 - 0.48}$
 $\frac{1.1 - 0.48}{2 - 0.3}$

$$\begin{array}{c|cccc}
1 & -0.5 \\
\hline
1.1 & -0.48 \\
2 & -0.3
\end{array}$$

WIND LOAD (cont.)

· Pressure on each surface: P= 964p-9.166pi) (Eq. 6-23)
Use Gf=108

~									
Lo	ocation	(ft)	92 (PSF)	CP	9266p (154)	GGi	9hGCpi (psf)	9266-9n(166p) (PSF)	9266 - 9n(-66pi) (psf)
Windha	u d	0	14.6	8.0	12.6	0.18	3.24	9.4	15.8
		17	14.6		12.6			9.4	15.8
		28.5	14.6		12.6			9.4	15.8
		41.5	16.1		13.9			F.01	17.1
		53	17.1		14.8	The second secon		11.6	18
		63.5	18.0		15.6			12.4	18.0
Leedw	ord								
	2	ALL	18.0	-0.2	-3.6	1		-6.8	-0.4
	(3)	ALL	18.0	-0.5	-9.D	1	↓	-12.2	-5.8
Pargon	4 (M)	65.5	18.1			1.5			27.3
	(L)	65.5	18.2			-1.0			-18.2
Roof	10-31.5			-,94	-18.3			-21.5	- [5.1
1.0	31.5-635	63.5	18,0	85	-16.5	018	3,24	-19.7	-13.3
	b3.5-100			55	-10.7	UiiU	7,61	-12.9	- 7.5
	0-31.5			-1.04	-20.2			- 23.4	-17.0
(3)	31.5-39	•		-0.7	-20.2 -13.6			-16.8	- 10.6
,	1	,						1	

[4] SEISMIC LOAD

- · Struture not exempt (ASCE7-02 §9.1.2)
- · Site Class D (§ 9.4.1.2.1)
- · Ss=0.365 Sus=0.367 Si=0.071 Sui=0.114 (From USGS Design Naps Report)
- · Scismic design category

- · Table 9.5,2.5.1, ELF is permitted, use LEF Procedure
- · Response Modification Factor, R (Table 9.5.2.2)
 - Ordinary Steel Moment Frames

 · No height limit

 · R=3.5, Cd=3, Wo=3 (noted R=3 indesign)
- * Risk Category II ⇒ Seismic Use Group I (Table 9.1.3)

 ⇒ Seismic Impatant Factor, Ie = 1.0 (Table 9.1.4)
- · Foundamental Period of the Building, Ta

$$T_a = C_t \cdot h_n^x$$
 (Eq. 9.5.5.3.2-1)

· Seismic Response Coefficient, Cs

$$C_S = \frac{Sox}{P/Ie} = \frac{0.367}{3/1} = 0.122$$
 (Eq. 5.55.21-1)

$$\Rightarrow$$
 Cs = $\frac{Sol}{T(NS)} = \frac{0.114}{.715+3} = .049 \neq Controls (Eq. 5.5.5.2.1-2)$

SEISMK LOAD

· Effective Total Seismic Weight

WHON =4(18×100+72×34)(100) + 2(100+90)(1056+1176+1176+1368)

W (R) =(18x100+72x39)(67psf)+2(100+90)(696plf) = 573k

W
$$(5th) = (18x100+50x9)(67psf)+2(100+90)(1056plf) = 552k$$

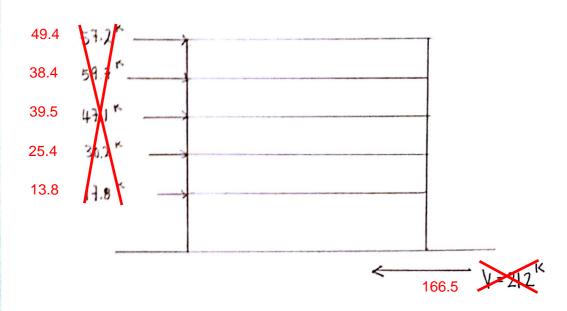
3397k

· Seismic Base Shear.

$$V = C_S W = 0.049 * 3397k = 166.5k$$

(Eq. 9.5,5,2.1)

(Eq. 9.5.4.4)


· Vertical Distribution of Seismic Forces (Fx)

$$F_{X} = (v_{X} \cdot V) = \begin{bmatrix} w_{X}h_{X}^{K} \\ \frac{1}{2}w_{i}h_{i}^{K} \end{bmatrix} V$$

$$V_{X} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} V$$

Level	h x (ft)	(Kip)	Mxhx	Cvx	Ex (Kip)	(Kib) Ax
Roof	63.5	573	76812	0.297	49.4	49.4
5th	53	552	59784	0.231	38.4	87.8
4th	41.5	757	61432	0.237	39.5	127.3
3 th	28.5	757	39429	0.152	25.4	152.7
2 th	17	758	21458	0.083	13.8	166.5
	Z	3397	258915	t	166.5	

Seismic loading vs. height

[5] Conclusion

After extensive analysis of the loading conditions imposed on 706 Madison Avenue, it is able to conclude that the wind forces will control the lateral design of the building. Snow loads could be not considered due to region's climate. Minimum design loads and load determination processes are specified using ASCE 7-02.